ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09164
56
21
v1v2v3 (latest)

Properties of the Stochastic Approximation EM Algorithm with Mini-batch Sampling

22 July 2019
Tabea Rebafka
E. Kuhn
C. Matias
ArXiv (abs)PDFHTML
Abstract

To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classicalconditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models.In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given.

View on arXiv
Comments on this paper