ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09467
24
4

Arena: a toolkit for Multi-Agent Reinforcement Learning

20 July 2019
Qing Wang
Jiechao Xiong
Lei Han
Meng Fang
Xinghai Sun
Zhuobin Zheng
Peng Sun
Zhengyou Zhang
ArXivPDFHTML
Abstract

We introduce Arena, a toolkit for multi-agent reinforcement learning (MARL) research. In MARL, it usually requires customizing observations, rewards and actions for each agent, changing cooperative-competitive agent-interaction, and playing with/against a third-party agent, etc. We provide a novel modular design, called Interface, for manipulating such routines in essentially two ways: 1) Different interfaces can be concatenated and combined, which extends the OpenAI Gym Wrappers concept to MARL scenarios. 2) During MARL training or testing, interfaces can be embedded in either wrapped OpenAI Gym compatible Environments or raw environment compatible Agents. We offer off-the-shelf interfaces for several popular MARL platforms, including StarCraft II, Pommerman, ViZDoom, Soccer, etc. The interfaces effectively support self-play RL and cooperative-competitive hybrid MARL. Also, Arena can be conveniently extended to your own favorite MARL platform.

View on arXiv
Comments on this paper