ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.10737
12
4

Joint Adversarial Training: Incorporating both Spatial and Pixel Attacks

24 July 2019
Haichao Zhang
Jianyu Wang
ArXivPDFHTML
Abstract

Conventional adversarial training methods using attacks that manipulate the pixel value directly and individually, leading to models that are less robust in face of spatial transformation-based attacks. In this paper, we propose a joint adversarial training method that incorporates both spatial transformation-based and pixel-value based attacks for improving model robustness. We introduce a spatial transformation-based attack with an explicit notion of budget and develop an algorithm for spatial attack generation. We further integrate both pixel and spatial attacks into one generation model and show how to leverage the complementary strengths of each other in training for improving the overall model robustness. Extensive experimental results on different benchmark datasets compared with state-of-the-art methods verified the effectiveness of the proposed method.

View on arXiv
Comments on this paper