ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12009
8
263

Representation Degeneration Problem in Training Natural Language Generation Models

28 July 2019
Jun Gao
Di He
Xu Tan
Tao Qin
Liwei Wang
Tie-Yan Liu
ArXivPDFHTML
Abstract

We study an interesting problem in training neural network-based models for natural language generation tasks, which we call the \emph{representation degeneration problem}. We observe that when training a model for natural language generation tasks through likelihood maximization with the weight tying trick, especially with big training datasets, most of the learnt word embeddings tend to degenerate and be distributed into a narrow cone, which largely limits the representation power of word embeddings. We analyze the conditions and causes of this problem and propose a novel regularization method to address it. Experiments on language modeling and machine translation show that our method can largely mitigate the representation degeneration problem and achieve better performance than baseline algorithms.

View on arXiv
Comments on this paper