End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction
with Relational Reasoning
- VOT
The majority of contemporary object-tracking approaches do not model interactions between objects. This contrasts with the fact that objects' paths are not independent: a cyclist might abruptly deviate from a previously planned trajectory in order to avoid colliding with a car. Building upon HART, a neural class-agnostic single-object tracker, we introduce a multi-object tracking method MOHART capable of relational reasoning. Importantly, the entire system, including the understanding of interactions and relations between objects, is class-agnostic and learned simultaneously in an end-to-end fashion. We explore a number of relational reasoning architectures and show that multi-headed self-attention outperforms the provided baselines and better accounts for complex physical interactions in a challenging toy experiment. We find that it leads to consistent performance gains in tracking as well as future trajectory prediction on three real-world datasets (MOTChallenge, UA-DETRAC, and Stanford Drone dataset), particularly in the presence of ego-motion, occlusions, crowded scenes, and faulty sensor inputs.
View on arXiv