ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.00704
11
15

Greedy AutoAugment

2 August 2019
Alireza Naghizadeh
Mohammadsajad Abavisani
Dimitris N. Metaxas
ArXivPDFHTML
Abstract

A major problem in data augmentation is to ensure that the generated new samples cover the search space. This is a challenging problem and requires exploration for data augmentation policies to ensure their effectiveness in covering the search space. In this paper, we propose Greedy AutoAugment as a highly efficient search algorithm to find the best augmentation policies. We use a greedy approach to reduce the exponential growth of the number of possible trials to linear growth. The Greedy Search also helps us to lead the search towards the sub-policies with better results, which eventually helps to increase the accuracy. The proposed method can be used as a reliable addition to the current artifitial neural networks. Our experiments on four datasets (Tiny ImageNet, CIFAR-10, CIFAR-100, and SVHN) show that Greedy AutoAugment provides better accuracy, while using 360 times fewer computational resources.

View on arXiv
Comments on this paper