ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01114
17
479

ABD-Net: Attentive but Diverse Person Re-Identification

3 August 2019
Tianlong Chen
Shaojin Ding
Jingyi Xie
Ye Yuan
Wuyang Chen
Yang Yang
Zhou Ren
Zhangyang Wang
ArXivPDFHTML
Abstract

Attention mechanism has been shown to be effective for person re-identification (Re-ID). However, the learned attentive feature embeddings which are often not naturally diverse nor uncorrelated, will compromise the retrieval performance based on the Euclidean distance. We advocate that enforcing diversity could greatly complement the power of attention. To this end, we propose an Attentive but Diverse Network (ABD-Net), which seamlessly integrates attention modules and diversity regularization throughout the entire network, to learn features that are representative, robust, and more discriminative. Specifically, we introduce a pair of complementary attention modules, focusing on channel aggregation and position awareness, respectively. Furthermore, a new efficient form of orthogonality constraint is derived to enforce orthogonality on both hidden activations and weights. Through careful ablation studies, we verify that the proposed attentive and diverse terms each contributes to the performance gains of ABD-Net. On three popular benchmarks, ABD-Net consistently outperforms existing state-of-the-art methods.

View on arXiv
Comments on this paper