ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.03480
10
3

Artificially Evolved Chunks for Morphosyntactic Analysis

9 August 2019
Mark Anderson
David Vilares
Carlos Gómez-Rodríguez
ArXivPDFHTML
Abstract

We introduce a language-agnostic evolutionary technique for automatically extracting chunks from dependency treebanks. We evaluate these chunks on a number of morphosyntactic tasks, namely POS tagging, morphological feature tagging, and dependency parsing. We test the utility of these chunks in a host of different ways. We first learn chunking as one task in a shared multi-task framework together with POS and morphological feature tagging. The predictions from this network are then used as input to augment sequence-labelling dependency parsing. Finally, we investigate the impact chunks have on dependency parsing in a multi-task framework. Our results from these analyses show that these chunks improve performance at different levels of syntactic abstraction on English UD treebanks and a small, diverse subset of non-English UD treebanks.

View on arXiv
Comments on this paper