ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.04741
20
13
v1v2v3 (latest)

Tensor-based computation of metastable and coherent sets

12 August 2019
Feliks Nuske
Patrick Gelß
Stefan Klus
C. Clementi
ArXiv (abs)PDFHTML
Abstract

Recent years have seen rapid advances in the data-driven analysis of dynamical systems based on Koopman operator theory and related approaches. On the other hand, low-rank tensor product approximations -- in particular the tensor train (TT) format -- have become a valuable tool for the solution of large-scale problems in a number of fields. In this work, we combine Koopman-based models and the TT format, enabling their application to high-dimensional problems in conjunction with a rich set of basis functions or features. We derive efficient algorithms to obtain a reduced matrix representation of the system's evolution operator starting from an appropriate low-rank representation of the data. These algorithms can be applied to both stationary and non-stationary systems. We establish the infinite-data limit of these matrix representations, and demonstrate our methods' capabilities using several benchmark data sets.

View on arXiv
Comments on this paper