ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06486
11
5

Independence Testing for Temporal Data

18 August 2019
Cencheng Shen
Jaewon Chung
Ronak R. Mehta
Ting Xu
Joshua T. Vogelstein
ArXivPDFHTML
Abstract

Temporal data are increasingly prevalent in modern data science. A fundamental question is whether two time series are related or not. Existing approaches often have limitations, such as relying on parametric assumptions, detecting only linear associations, and requiring multiple tests and corrections. While many non-parametric and universally consistent dependence measures have recently been proposed, directly applying them to temporal data can inflate the p-value and result in an invalid test. To address these challenges, this paper introduces the temporal dependence statistic with block permutation to test independence between temporal data. Under proper assumptions, the proposed procedure is asymptotically valid and universally consistent for testing independence between stationary time series, and capable of estimating the optimal dependence lag that maximizes the dependence. Moreover, it is compatible with a rich family of distance and kernel based dependence measures, eliminates the need for multiple testing, and exhibits excellent testing power in various simulation settings.

View on arXiv
Comments on this paper