ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.07380
11
49

PAC-Bayes with Backprop

19 August 2019
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
ArXivPDFHTML
Abstract

We explore the family of methods "PAC-Bayes with Backprop" (PBB) to train probabilistic neural networks by minimizing PAC-Bayes bounds. We present two training objectives, one derived from a previously known PAC-Bayes bound, and a second one derived from a novel PAC-Bayes bound. Both training objectives are evaluated on MNIST and on various UCI data sets. Our experiments show two striking observations: we obtain competitive test set error estimates (~1.4% on MNIST) and at the same time we compute non-vacuous bounds with much tighter values (~2.3% on MNIST) than previous results. These observations suggest that neural nets trained by PBB may lead to self-bounding learning, where the available data can be used to simultaneously learn a predictor and certify its risk, with no need to follow a data-splitting protocol.

View on arXiv
Comments on this paper