ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08210
11
335

Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs

22 August 2019
Yuting Wu
Xiao Liu
Yansong Feng
Zheng Wang
Rui Yan
Dongyan Zhao
ArXivPDFHTML
Abstract

Entity alignment is the task of linking entities with the same real-world identity from different knowledge graphs (KGs), which has been recently dominated by embedding-based methods. Such approaches work by learning KG representations so that entity alignment can be performed by measuring the similarities between entity embeddings. While promising, prior works in the field often fail to properly capture complex relation information that commonly exists in multi-relational KGs, leaving much room for improvement. In this paper, we propose a novel Relation-aware Dual-Graph Convolutional Network (RDGCN) to incorporate relation information via attentive interactions between the knowledge graph and its dual relation counterpart, and further capture neighboring structures to learn better entity representations. Experiments on three real-world cross-lingual datasets show that our approach delivers better and more robust results over the state-of-the-art alignment methods by learning better KG representations.

View on arXiv
Comments on this paper