The concept of low-congestion shortcuts is initiated by Ghaffari and Haeupler [SODA2016] for addressing the design of CONGEST algorithms running fast in restricted network topologies. Specifically, given a specific graph class , an -round algorithm of constructing shortcuts of quality for any instance in results in -round algorithms of solving several fundamental graph problems such as minimum spanning tree and minimum cut, for . In this paper, we consider the relationship between the quality of low-congestion shortcuts and three major graph parameters, chordality, diameter, and clique-width. The main contribution of the paper is threefold: (1) We show an -round algorithm which constructs a low-congestion shortcut with quality for any -chordal graph, and prove that the quality and running time of this construction is nearly optimal up to polylogarithmic factors. (2) We present two algorithms, each of which constructs a low-congestion shortcut with quality in rounds for graphs of , and that with quality in rounds for graphs of respectively. These results obviously deduce two MST algorithms running in and rounds for and respectively, which almost close the long-standing complexity gap of the MST construction in small-diameter graphs originally posed by Lotker et al. [Distributed Computing 2006]. (3) We show that bounding clique-width does not help the construction of good shortcuts by presenting a network topology of clique-width six where the construction of MST is as expensive as the general case.
View on arXiv