ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.09474
6
72

An Evaluation of Feature Matchers for Fundamental Matrix Estimation

26 August 2019
Jiawang Bian
Yu-Huan Wu
Ji Zhao
Yun-Hai Liu
Le Zhang
Ming-Ming Cheng
Ian Reid
    3DV
ArXivPDFHTML
Abstract

Matching two images while estimating their relative geometry is a key step in many computer vision applications. For decades, a well-established pipeline, consisting of SIFT, RANSAC, and 8-point algorithm, has been used for this task. Recently, many new approaches were proposed and shown to outperform previous alternatives on standard benchmarks, including the learned features, correspondence pruning algorithms, and robust estimators. However, whether it is beneficial to incorporate them into the classic pipeline is less-investigated. To this end, we are interested in i) evaluating the performance of these recent algorithms in the context of image matching and epipolar geometry estimation, and ii) leveraging them to design more practical registration systems. The experiments are conducted in four large-scale datasets using strictly defined evaluation metrics, and the promising results provide insight into which algorithms suit which scenarios. According to this, we propose three high-quality matching systems and a Coarse-to-Fine RANSAC estimator. They show remarkable performances and have potentials to a large part of computer vision tasks. To facilitate future research, the full evaluation pipeline and the proposed methods are made publicly available.

View on arXiv
Comments on this paper