ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.11515
12
11

Improving Utility and Security of the Shuffler-based Differential Privacy

30 August 2019
Tianhao Wang
Bolin Ding
Min Xu
Zhicong Huang
Cheng Hong
Jingren Zhou
Ninghui Li
S. Jha
ArXivPDFHTML
Abstract

When collecting information, local differential privacy (LDP) alleviates privacy concerns of users because their private information is randomized before being sent it to the central aggregator. LDP imposes large amount of noise as each user executes the randomization independently. To address this issue, recent work introduced an intermediate server with the assumption that this intermediate server does not collude with the aggregator. Under this assumption, less noise can be added to achieve the same privacy guarantee as LDP, thus improving utility for the data collection task. This paper investigates this multiple-party setting of LDP. We analyze the system model and identify potential adversaries. We then make two improvements: a new algorithm that achieves a better privacy-utility tradeoff; and a novel protocol that provides better protection against various attacks. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method.

View on arXiv
Comments on this paper