ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.00002
19
9

Minimum LqL^qLq-distance estimators for non-normalized parametric models

30 August 2019
Steffen Betsch
B. Ebner
B. Klar
ArXivPDFHTML
Abstract

We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum distance estimator, incorporating as a distance function the LqL^qLq-norm. Throughout, we deal rigorously with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide consistency results in a common asymptotic setting, and compare our new method with classical estimators for the exponential-, the Rayleigh-, and the Burr Type XII distribution in Monte Carlo simulation studies. We also assess the performance of different estimators for non-normalized models in the context of an exponential-polynomial family.

View on arXiv
Comments on this paper