185
v1v2v3v4 (latest)

Evolutionary reinforcement learning of dynamical large deviations

Journal of Chemical Physics (JCP), 2019
Abstract

We show how to calculate the likelihood of dynamical large deviations using evolutionary reinforcement learning. An agent, a stochastic model, propagates a continuous-time Monte Carlo trajectory and receives a reward conditioned upon the values of certain path-extensive quantities. Evolution produces progressively fitter agents, eventually allowing the calculation of a piece of a large-deviation rate function for a particular model and path-extensive quantity. For models with small state spaces the evolutionary process acts directly on rates, and for models with large state spaces the process acts on the weights of a neural network that parameterizes the model's rates. This approach shows how path-extensive physics problems can be considered within a framework widely used in machine learning.

View on arXiv
Comments on this paper