ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.00966
62
16
v1v2 (latest)

A Diffusion Process Perspective on Posterior Contraction Rates for Parameters

3 September 2019
Wenlong Mou
Nhat Ho
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
ArXiv (abs)PDFHTML
Abstract

We show that diffusion processes can be exploited to study the posterior contraction rates of parameters in Bayesian models. By treating the posterior distribution as a stationary distribution of a stochastic differential equation (SDE), posterior convergence rates can be established via control of the moments of the corresponding SDE. Our results depend on the structure of the population log-likelihood function, obtained in the limit of an infinite sample sample size, and stochastic perturbation bounds between the population and sample log-likelihood functions. When the population log-likelihood is strongly concave, we establish posterior convergence of a ddd-dimensional parameter at the optimal rate (d/n)1/2(d/n)^{1/ 2}(d/n)1/2. In the weakly concave setting, we show that the convergence rate is determined by the unique solution of a non-linear equation that arises from the interplay between the degree of weak concavity and the stochastic perturbation bounds. We illustrate this general theory by deriving posterior convergence rates for three concrete examples: Bayesian logistic regression models, Bayesian single index models, and over-specified Bayesian mixture models.

View on arXiv
Comments on this paper