ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.01683
20
65

Deep Learning-Aided Tabu Search Detection for Large MIMO Systems

4 September 2019
N. Nguyen
Kyungchun Lee
ArXivPDFHTML
Abstract

In this study, we consider the application of deep learning (DL) to tabu search (TS) detection in large multiple-input multiple-output (MIMO) systems. First, we propose a deep neural network architecture for symbol detection, termed the fast-convergence sparsely connected detection network (FS-Net), which is obtained by optimizing the prior detection networks called DetNet and ScNet. Then, we propose the DL-aided TS algorithm, in which the initial solution is approximated by the proposed FS-Net. Furthermore, in this algorithm, an adaptive early termination algorithm and a modified searching process are performed based on the predicted approximation error, which is determined from the FS-Net-based initial solution, so that the optimal solution can be reached earlier. The simulation results show that the proposed algorithm achieves approximately 90% complexity reduction for a 32×3232 \times 3232×32 MIMO system with QPSK with respect to the existing TS algorithms, while maintaining almost the same performance.

View on arXiv
Comments on this paper