ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02827
6
30

Master your Metrics with Calibration

6 September 2019
W. Siblini
Jordan Fréry
Liyun He-Guelton
Frédéric Oblé
Yi-Qing Wang
ArXivPDFHTML
Abstract

Machine learning models deployed in real-world applications are often evaluated with precision-based metrics such as F1-score or AUC-PR (Area Under the Curve of Precision Recall). Heavily dependent on the class prior, such metrics make it difficult to interpret the variation of a model's performance over different subpopulations/subperiods in a dataset. In this paper, we propose a way to calibrate the metrics so that they can be made invariant to the prior. We conduct a large number of experiments on balanced and imbalanced data to assess the behavior of calibrated metrics and show that they improve interpretability and provide a better control over what is really measured. We describe specific real-world use-cases where calibration is beneficial such as, for instance, model monitoring in production, reporting, or fairness evaluation.

View on arXiv
Comments on this paper