ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.03172
84
26

Towards Understanding the Importance of Noise in Training Neural Networks

7 September 2019
Mo Zhou
Tianyi Liu
Yan Li
Dachao Lin
Enlu Zhou
T. Zhao
    MLT
ArXiv (abs)PDFHTML
Abstract

Numerous empirical evidence has corroborated that the noise plays a crucial rule in effective and efficient training of neural networks. The theory behind, however, is still largely unknown. This paper studies this fundamental problem through training a simple two-layer convolutional neural network model. Although training such a network requires solving a nonconvex optimization problem with a spurious local optimum and a global optimum, we prove that perturbed gradient descent and perturbed mini-batch stochastic gradient algorithms in conjunction with noise annealing is guaranteed to converge to a global optimum in polynomial time with arbitrary initialization. This implies that the noise enables the algorithm to efficiently escape from the spurious local optimum. Numerical experiments are provided to support our theory.

View on arXiv
Comments on this paper