ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.04373
44
135
v1v2 (latest)

GBDT-MO: Gradient Boosted Decision Trees for Multiple Outputs

10 September 2019
Zhendong Zhang
Cheolkon Jung
ArXiv (abs)PDFHTML
Abstract

Gradient boosted decision trees (GBDTs) are widely used in machine learning, and the output of current GBDT implementations is a single variable. When there are multiple outputs, GBDT constructs multiple trees corresponding to the output variables. The correlations between variables are ignored by such a strategy causing redundancy of the learned tree structures. In this paper, we propose a general method to learn GBDT for multiple outputs, called GBDT-MO. Each leaf of GBDT-MO constructs predictions of all variables or a subset of automatically selected variables. This is achieved by considering the summation of objective gains over all output variables. Moreover, we extend histogram approximation into multiple output case to speed up the training process. Various experiments on synthetic and real-world datasets verify that GBDT-MO achieves outstanding performance in terms of both accuracy and training speed. Our codes are available on-line.

View on arXiv
Comments on this paper