ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.04495
47
2

Natural Adversarial Sentence Generation with Gradient-based Perturbation

6 September 2019
Yu-Lun Hsieh
Minhao Cheng
Da-Cheng Juan
Wei Wei
W. Hsu
Cho-Jui Hsieh
    AAML
ArXiv (abs)PDFHTML
Abstract

This work proposes a novel algorithm to generate natural language adversarial input for text classification models, in order to investigate the robustness of these models. It involves applying gradient-based perturbation on the sentence embeddings that are used as the features for the classifier, and learning a decoder for generation. We employ this method to a sentiment analysis model and verify its effectiveness in inducing incorrect predictions by the model. We also conduct quantitative and qualitative analysis on these examples and demonstrate that our approach can generate more natural adversaries. In addition, it can be used to successfully perform black-box attacks, which involves attacking other existing models whose parameters are not known. On a public sentiment analysis API, the proposed method introduces a 20% relative decrease in average accuracy and 74% relative increase in absolute error.

View on arXiv
Comments on this paper