ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.04999
11
0

Domain-Agnostic Few-Shot Classification by Learning Disparate Modulators

11 September 2019
Yongseok Choi
Junyoung Park
Subin Yi
D.-Y. Cho
    OOD
ArXivPDFHTML
Abstract

Although few-shot learning research has advanced rapidly with the help of meta-learning, its practical usefulness is still limited because most of them assumed that all meta-training and meta-testing examples came from a single domain. We propose a simple but effective way for few-shot classification in which a task distribution spans multiple domains including ones never seen during meta-training. The key idea is to build a pool of models to cover this wide task distribution and learn to select the best one for a particular task through cross-domain meta-learning. All models in the pool share a base network while each model has a separate modulator to refine the base network in its own way. This framework allows the pool to have representational diversity without losing beneficial domain-invariant features. We verify the effectiveness of the proposed algorithm through experiments on various datasets across diverse domains.

View on arXiv
Comments on this paper