192

Latent Distance Estimation for Random Geometric Graphs

Neural Information Processing Systems (NeurIPS), 2019
Abstract

Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of nn points X1,X2,,XnX_1,X_2,\cdots,X_n on the Euclidean sphere~Sd1\mathbb{S}^{d-1} which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the "link" function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a function on Sd1\mathbb{S}^{d-1}, up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension dd of the latent space.

View on arXiv
Comments on this paper