ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.07866
51
15
v1v2v3 (latest)

Walling up Backdoors in Intrusion Detection Systems

17 September 2019
Maximilian Bachl
Alexander Hartl
J. Fabini
Tanja Zseby
    AAML
ArXiv (abs)PDFHTML
Abstract

Interest in poisoning attacks and backdoors recently resurfaced for Deep Learning (DL) applications. Several successful defense mechanisms have been recently proposed for Convolutional Neural Networks (CNNs), for example in the context of autonomous driving. We show that visualization approaches can aid in identifying a backdoor independent of the used classifier. Surprisingly, we find that common defense mechanisms fail utterly to remove backdoors in DL for Intrusion Detection Systems (IDSs). Finally, we devise pruning-based approaches to remove backdoors for Decision Trees (DTs) and Random Forests (RFs) and demonstrate their effectiveness for two different network security datasets.

View on arXiv
Comments on this paper