ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08313
6
68

Unsupervised Sketch-to-Photo Synthesis

18 September 2019
Runtao Liu
Qian Yu
Stella X. Yu
ArXivPDFHTML
Abstract

Humans can envision a realistic photo given a free-hand sketch that is not only spatially imprecise and geometrically distorted but also without colors and visual details. We study unsupervised sketch-to-photo synthesis for the first time, learning from unpaired sketch-photo data where the target photo for a sketch is unknown during training. Existing works only deal with style change or spatial deformation alone, synthesizing photos from edge-aligned line drawings or transforming shapes within the same modality, e.g., color images. Our key insight is to decompose unsupervised sketch-to-photo synthesis into a two-stage translation task: First shape translation from sketches to grayscale photos and then content enrichment from grayscale to color photos. We also incorporate a self-supervised denoising objective and an attention module to handle abstraction and style variations that are inherent and specific to sketches. Our synthesis is sketch-faithful and photo-realistic to enable sketch-based image retrieval in practice. An exciting corollary product is a universal and promising sketch generator that captures human visual perception beyond the edge map of a photo.

View on arXiv
Comments on this paper