ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08423
125
444

Deep neural network solution of the electronic Schrödinger equation

16 September 2019
J. Hermann
Zeno Schätzle
Frank Noé
ArXivPDFHTML
Abstract

[New and updated results were published in Nature Chemistry, doi:10.1038/s41557-020-0544-y.] The electronic Schr\"odinger equation describes fundamental properties of molecules and materials, but can only be solved analytically for the hydrogen atom. The numerically exact full configuration-interaction method is exponentially expensive in the number of electrons. Quantum Monte Carlo is a possible way out: it scales well to large molecules, can be parallelized, and its accuracy has, as yet, only been limited by the flexibility of the used wave function ansatz. Here we propose PauliNet, a deep-learning wave function ansatz that achieves nearly exact solutions of the electronic Schr\"odinger equation. PauliNet has a multireference Hartree-Fock solution built in as a baseline, incorporates the physics of valid wave functions, and is trained using variational quantum Monte Carlo (VMC). PauliNet outperforms comparable state-of-the-art VMC ansatzes for atoms, diatomic molecules and a strongly-correlated hydrogen chain by a margin and is yet computationally efficient. We anticipate that thanks to the favourable scaling with system size, this method may become a new leading method for highly accurate electronic-strucutre calculations on medium-sized molecular systems.

View on arXiv
Comments on this paper