ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.08737
16
0

BPMR: Bayesian Probabilistic Multivariate Ranking

18 September 2019
Nan Wang
Hongning Wang
ArXivPDFHTML
Abstract

Multi-aspect user preferences are attracting wider attention in recommender systems, as they enable more detailed understanding of users' evaluations of items. Previous studies show that incorporating multi-aspect preferences can greatly improve the performance and explainability of recommendation. However, as recommendation is essentially a ranking problem, there is no principled solution for ranking multiple aspects collectively to enhance the recommendation. In this work, we derive a multi-aspect ranking criterion. To maintain the dependency among different aspects, we propose to use a vectorized representation of multi-aspect ratings and develop a probabilistic multivariate tensor factorization framework (PMTF). The framework naturally leads to a probabilistic multi-aspect ranking criterion, which generalizes the single-aspect ranking to a multivariate fashion. Experiment results on a large multi-aspect review rating dataset confirmed the effectiveness of our solution.

View on arXiv
Comments on this paper