ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.09237
20
7

Improved Variational Neural Machine Translation by Promoting Mutual Information

19 September 2019
Arya D. McCarthy
Xian Li
Jiatao Gu
Ning Dong
    DRL
ArXivPDFHTML
Abstract

Posterior collapse plagues VAEs for text, especially for conditional text generation with strong autoregressive decoders. In this work, we address this problem in variational neural machine translation by explicitly promoting mutual information between the latent variables and the data. Our model extends the conditional variational autoencoder (CVAE) with two new ingredients: first, we propose a modified evidence lower bound (ELBO) objective which explicitly promotes mutual information; second, we regularize the probabilities of the decoder by mixing an auxiliary factorized distribution which is directly predicted by the latent variables. We present empirical results on the Transformer architecture and show the proposed model effectively addressed posterior collapse: latent variables are no longer ignored in the presence of powerful decoder. As a result, the proposed model yields improved translation quality while demonstrating superior performance in terms of data efficiency and robustness.

View on arXiv
Comments on this paper