ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10549
13
18

Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Estimators for Reinforcement Learning

23 September 2019
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
ArXivPDFHTML
Abstract

Gradient-based methods for optimisation of objectives in stochastic settings with unknown or intractable dynamics require estimators of derivatives. We derive an objective that, under automatic differentiation, produces low-variance unbiased estimators of derivatives at any order. Our objective is compatible with arbitrary advantage estimators, which allows the control of the bias and variance of any-order derivatives when using function approximation. Furthermore, we propose a method to trade off bias and variance of higher order derivatives by discounting the impact of more distant causal dependencies. We demonstrate the correctness and utility of our objective in analytically tractable MDPs and in meta-reinforcement-learning for continuous control.

View on arXiv
Comments on this paper