ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10856
25
61

IFR-Net: Iterative Feature Refinement Network for Compressed Sensing MRI

24 September 2019
Yiling Liu
Qiegen Liu
Minghui Zhang
Qingxin Yang
Shanshan Wang
Dong Liang
ArXivPDFHTML
Abstract

To improve the compressive sensing MRI (CS-MRI) approaches in terms of fine structure loss under high acceleration factors, we have proposed an iterative feature refinement model (IFR-CS), equipped with fixed transforms, to restore the meaningful structures and details. Nevertheless, the proposed IFR-CS still has some limitations, such as the selection of hyper-parameters, a lengthy reconstruction time, and the fixed sparsifying transform. To alleviate these issues, we unroll the iterative feature refinement procedures in IFR-CS to a supervised model-driven network, dubbed IFR-Net. Equipped with training data pairs, both regularization parameter and the utmost feature refinement operator in IFR-CS become trainable. Additionally, inspired by the powerful representation capability of convolutional neural network (CNN), CNN-based inversion blocks are explored in the sparsity-promoting denoising module to generalize the sparsity-enforcing operator. Extensive experiments on both simulated and in vivo MR datasets have shown that the proposed network possesses a strong capability to capture image details and preserve well the structural information with fast reconstruction speed.

View on arXiv
Comments on this paper