ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.11799
13
0

Manifold Oblique Random Forests: Towards Closing the Gap on Convolutional Deep Networks

25 September 2019
Adam Li
Ronan Perry
Chester Huynh
Tyler M. Tomita
Ronak R. Mehta
Jesús Arroyo
Jesse Patsolic
Benjamin Falk
Joshua T. Vogelstein
ArXivPDFHTML
Abstract

Decision forests (Forests), in particular random forests and gradient boosting trees, have demonstrated state-of-the-art accuracy compared to other methods in many supervised learning scenarios. In particular, Forests dominate other methods in tabular data, that is, when the feature space is unstructured, so that the signal is invariant to a permutation of the feature indices. However, in structured data lying on a manifold (such as images, text, and speech) deep networks (Networks), specifically convolutional deep networks (ConvNets), tend to outperform Forests. We conjecture that at least part of the reason for this is that the input to Networks is not simply the feature magnitudes, but also their indices. In contrast, naive Forest implementations fail to explicitly consider feature indices. A recently proposed Forest approach demonstrates that Forests, for each node, implicitly sample a random matrix from some specific distribution. These Forests, like some classes of Networks, learn by partitioning the feature space into convex polytopes corresponding to linear functions. We build on that approach and show that one can choose distributions in a manifold-aware fashion to incorporate feature locality. We demonstrate the empirical performance on data whose features live on three different manifolds: a torus, images, and time-series. Moreover, we demonstrate its strength in multivariate simulated settings and also show superiority in predicting surgical outcome in epilepsy patients and predicting movement direction from raw stereotactic EEG data from non-motor brain regions. In all simulations and real data, Manifold Oblique Random Forest (MORF) algorithm outperforms approaches that ignore feature space structure and challenges the performance of ConvNets. Moreover, MORF runs fast and maintains interpretability and theoretical justification.

View on arXiv
Comments on this paper