ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.12324
11
40

Learning Generalizable Locomotion Skills with Hierarchical Reinforcement Learning

26 September 2019
Tianyu Li
Nathan Lambert
Roberto Calandra
Franziska Meier
Akshara Rai
ArXivPDFHTML
Abstract

Learning to locomote to arbitrary goals on hardware remains a challenging problem for reinforcement learning. In this paper, we present a hierarchical learning framework that improves sample-efficiency and generalizability of locomotion skills on real-world robots. Our approach divides the problem of goal-oriented locomotion into two sub-problems: learning diverse primitives skills, and using model-based planning to sequence these skills. We parametrize our primitives as cyclic movements, improving sample-efficiency of learning on a 18 degrees of freedom robot. Then, we learn coarse dynamics models over primitive cycles and use them in a model predictive control framework. This allows us to learn to walk to arbitrary goals up to 12m away, after about two hours of training from scratch on hardware. Our results on a Daisy hexapod hardware and simulation demonstrate the efficacy of our approach at reaching distant targets, in different environments and with sensory noise.

View on arXiv
Comments on this paper