ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.13189
77
230

Learning Sparse Nonparametric DAGs

29 September 2019
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
    CML
ArXivPDFHTML
Abstract

We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous program for score-based learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. Unlike existing approaches that require specific modeling choices, loss functions, or algorithms, we present a completely general framework that can be applied to general nonlinear models (e.g. without additive noise), general differentiable loss functions, and generic black-box optimization routines. The code is available at https://github.com/xunzheng/notears.

View on arXiv
Comments on this paper