ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.13607
17
4

MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning

30 September 2019
Haotian Fu
Hongyao Tang
Jianye Hao
Wulong Liu
Chong Chen
ArXivPDFHTML
Abstract

Most meta reinforcement learning (meta-RL) methods learn to adapt to new tasks by directly optimizing the parameters of policies over primitive action space. Such algorithms work well in tasks with relatively slight difference. However, when the task distribution becomes wider, it would be quite inefficient to directly learn such a meta-policy. In this paper, we propose a new meta-RL algorithm called Meta Goal-generation for Hierarchical RL (MGHRL). Instead of directly generating policies over primitive action space for new tasks, MGHRL learns to generate high-level meta strategies over subgoals given past experience and leaves the rest of how to achieve subgoals as independent RL subtasks. Our empirical results on several challenging simulated robotics environments show that our method enables more efficient and generalized meta-learning from past experience.

View on arXiv
Comments on this paper