ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00353
9
55

Grammatical Error Correction in Low-Resource Scenarios

1 October 2019
Jakub Náplava
Milan Straka
ArXivPDFHTML
Abstract

Grammatical error correction in English is a long studied problem with many existing systems and datasets. However, there has been only a limited research on error correction of other languages. In this paper, we present a new dataset AKCES-GEC on grammatical error correction for Czech. We then make experiments on Czech, German and Russian and show that when utilizing synthetic parallel corpus, Transformer neural machine translation model can reach new state-of-the-art results on these datasets. AKCES-GEC is published under CC BY-NC-SA 4.0 license at https://hdl.handle.net/11234/1-3057 and the source code of the GEC model is available at https://github.com/ufal/low-resource-gec-wnut2019.

View on arXiv
Comments on this paper