ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01544
25
7
v1v2 (latest)

Robust Risk Minimization for Statistical Learning

3 October 2019
Muhammad Osama
Dave Zachariah
Petre Stoica
    OOD
ArXiv (abs)PDFHTML
Abstract

We consider a general statistical learning problem where an unknown fraction of the training data is corrupted. We develop a robust learning method that only requires specifying an upper bound on the corrupted data fraction. The method minimizes a risk function defined by a non-parametric distribution with unknown probability weights. We derive and analyse the optimal weights and show how they provide robustness against corrupted data. Furthermore, we give a computationally efficient coordinate descent algorithm to solve the risk minimization problem. We demonstrate the wide range applicability of the method, including regression, classification, unsupervised learning and classic parameter estimation, with state-of-the-art performance.

View on arXiv
Comments on this paper