ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02411
6
3

Transforming the output of GANs by fine-tuning them with features from different datasets

6 October 2019
Terence Broad
M. Grierson
ArXivPDFHTML
Abstract

In this work we present a method for fine-tuning pre-trained GANs with features from different datasets, resulting in the transformation of the output distribution into a new distribution with novel characteristics. The weights of the generator are updated using the weighted sum of the losses from a cross-dataset classifier and the frozen weights of the pre-trained discriminator. We discuss details of the technical implementation and share some of the visual results from this training process.

View on arXiv
Comments on this paper