ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02717
11
6

Brain MRI Tumor Segmentation with Adversarial Networks

7 October 2019
E. Giacomello
Daniele Loiacono
L. Mainardi
    GAN
    MedIm
ArXivPDFHTML
Abstract

Deep Learning is a promising approach to either automate or simplify several tasks in the healthcare domain. In this work, we introduce SegAN-CAT, an approach to brain tumor segmentation in Magnetic Resonance Images (MRI), based on Adversarial Networks. In particular, we extend SegAN, successfully applied to the same task in a previous work, in two respects: (i) we used a different model input and (ii) we employed a modified loss function to train the model. We tested our approach on two large datasets, made available by the Brain Tumor Image Segmentation Benchmark (BraTS). First, we trained and tested some segmentation models assuming the availability of all the major MRI contrast modalities, i.e., T1-weighted, T1 weighted contrast-enhanced, T2-weighted, and T2-FLAIR. However, as these four modalities are not always all available for each patient, we also trained and tested four segmentation models that take as input MRIs acquired only with a single contrast modality. Finally, we proposed to apply transfer learning across different contrast modalities to improve the performance of these single-modality models. Our results are promising and show that not SegAN-CAT is able to outperform SegAN when all the four modalities are available, but also that transfer learning can actually lead to better performances when only a single modality is available.

View on arXiv
Comments on this paper