ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02804
19
0

Semantic Preserving Generative Adversarial Models

7 October 2019
Shahar Harel
Meir Maor
A. Ronen
    GAN
ArXivPDFHTML
Abstract

We introduce generative adversarial models in which the discriminator is replaced by a calibrated (non-differentiable) classifier repeatedly enhanced by domain relevant features. The role of the classifier is to prove that the actual and generated data differ over a controlled semantic space. We demonstrate that such models have the ability to generate objects with strong guarantees on their properties in a wide range of domains. They require less data than ordinary GANs, provide natural stopping conditions, uncover important properties of the data, and enhance transfer learning. Our techniques can be combined with standard generative models. We demonstrate the usefulness of our approach by applying it to several unrelated domains: generating good locations for cellular antennae, molecule generation preserving key chemical properties, and generating and extrapolating lines from very few data points. Intriguing open problems are presented as well.

View on arXiv
Comments on this paper