ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02859
13
2

Assessing and Visualizing Matrix Variate Normality

7 October 2019
Nikola Počuča
M. Gallaugher
Katharine M. Clark
P. McNicholas
ArXiv (abs)PDFHTML
Abstract

A framework for assessing the matrix variate normality of three-way data is developed. The framework comprises a visual method and a goodness of fit test based on the Mahalanobis squared distance (MSD). The MSD of multivariate and matrix variate normal estimators, respectively, are used as an assessment tool for matrix variate normality. Specifically, these are used in the form of a distance-distance (DD) plot as a graphical method for visualizing matrix variate normality. In addition, we employ the popular Kolmogorov-Smirnov goodness of fit test in the context of assessing matrix variate normality for three-way data. Finally, an appropriate simulation study spanning a large range of dimensions and data sizes shows that for various settings, the test proves itself highly robust.

View on arXiv
Comments on this paper