ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.03833
75
17
v1v2 (latest)

Word Embedding Visualization Via Dictionary Learning

9 October 2019
Juexiao Zhang
Yubei Chen
Brian Cheung
Bruno A. Olshausen
ArXiv (abs)PDFHTML
Abstract

Co-occurrence statistics based word embedding techniques have proved to be very useful in extracting the semantic and syntactic representation of words as low dimensional continuous vectors. In this work, we discovered that dictionary learning can open up these word vectors as a linear combination of more elementary word factors. We demonstrate many of the learned factors have surprisingly strong semantic or syntactic meaning corresponding to the factors previously identified manually by human inspection. Thus dictionary learning provides a powerful visualization tool for understanding word embedding representations. Furthermore, we show that the word factors can help in identifying key semantic and syntactic differences in word analogy tasks and improve upon the state-of-the-art word embedding techniques in these tasks by a large margin.

View on arXiv
Comments on this paper