ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.04235
12
4

Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining

9 October 2019
Zhouyuan Huo
Heng-Chiao Huang
    FedML
ArXivPDFHTML
Abstract

Recently, reducing communication time between machines becomes the main focus of distributed data mining. Previous methods propose to make workers do more computation locally before aggregating local solutions in the server such that fewer communication rounds between server and workers are required. However, these methods do not consider reducing the communication time per round and work very poor under certain conditions, for example, when there are straggler problems or the dataset is of high dimension. In this paper, we target to reduce communication time per round as well as the required communication rounds. We propose a communication-efficient distributed primal-dual method with straggler-agnostic server and bandwidth-efficient workers. We analyze the convergence property and prove that the proposed method guarantees linear convergence rate to the optimal solution for convex problems. Finally, we conduct large-scale experiments in simulated and real distributed systems and experimental results demonstrate that the proposed method is much faster than compared methods.

View on arXiv
Comments on this paper