ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05026
15
11

Customizing Sequence Generation with Multi-Task Dynamical Systems

11 October 2019
Alex Bird
Christopher K. I. Williams
    AI4CE
ArXivPDFHTML
Abstract

Dynamical system models (including RNNs) often lack the ability to adapt the sequence generation or prediction to a given context, limiting their real-world application. In this paper we show that hierarchical multi-task dynamical systems (MTDSs) provide direct user control over sequence generation, via use of a latent code z\mathbf{z}z that specifies the customization to the individual data sequence. This enables style transfer, interpolation and morphing within generated sequences. We show the MTDS can improve predictions via latent code interpolation, and avoid the long-term performance degradation of standard RNN approaches.

View on arXiv
Comments on this paper