ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05591
11
13

Measuring Unfairness through Game-Theoretic Interpretability

12 October 2019
Juliana Cesaro
Fabio Gagliardi Cozman
    FAtt
ArXivPDFHTML
Abstract

One often finds in the literature connections between measures of fairness and measures of feature importance employed to interpret trained classifiers. However, there seems to be no study that compares fairness measures and feature importance measures. In this paper we propose ways to evaluate and compare such measures. We focus in particular on SHAP, a game-theoretic measure of feature importance; we present results for a number of unfairness-prone datasets.

View on arXiv
Comments on this paper