ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05784
6
3

Interpretable Deep Neural Networks for Dimensional and Categorical Emotion Recognition in-the-wild

13 October 2019
Xia Yicheng
D. Kollias
ArXivPDFHTML
Abstract

Emotions play an important role in people's life. Understanding and recognising is not only important for interpersonal communication, but also has promising applications in Human-Computer Interaction, automobile safety and medical research. This project focuses on extending the emotion recognition database, and training the CNN + RNN emotion recognition neural networks with emotion category representation and valence \& arousal representation. The combined models are constructed by training the two representations simultaneously. The comparison and analysis between the three types of model are discussed. The inner-relationship between two emotion representations and the interpretability of the neural networks are investigated. The findings suggest that categorical emotion recognition performance can benefit from training with a combined model. And the mapping of emotion category and valence \& arousal values can explain this phenomenon.

View on arXiv
Comments on this paper