ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.05804
14
1

The Role of Embedding Complexity in Domain-invariant Representations

13 October 2019
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
ArXivPDFHTML
Abstract

Unsupervised domain adaptation aims to generalize the hypothesis trained in a source domain to an unlabeled target domain. One popular approach to this problem is to learn domain-invariant embeddings for both domains. In this work, we study, theoretically and empirically, the effect of the embedding complexity on generalization to the target domain. In particular, this complexity affects an upper bound on the target risk; this is reflected in experiments, too. Next, we specify our theoretical framework to multilayer neural networks. As a result, we develop a strategy that mitigates sensitivity to the embedding complexity, and empirically achieves performance on par with or better than the best layer-dependent complexity tradeoff.

View on arXiv
Comments on this paper