ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.06690
28
2

Being the center of attention: A Person-Context CNN framework for Personality Recognition

15 October 2019
Dario Dotti
Mirela C. Popa
S. Asteriadis
ArXivPDFHTML
Abstract

This paper proposes a novel study on personality recognition using video data from different scenarios. Our goal is to jointly model nonverbal behavioral cues with contextual information for a robust, multi-scenario, personality recognition system. Therefore, we build a novel multi-stream Convolutional Neural Network framework (CNN), which considers multiple sources of information. From a given scenario, we extract spatio-temporal motion descriptors from every individual in the scene, spatio-temporal motion descriptors encoding social group dynamics, and proxemics descriptors to encode the interaction with the surrounding context. All the proposed descriptors are mapped to the same feature space facilitating the overall learning effort. Experiments on two public datasets demonstrate the effectiveness of jointly modeling the mutual Person-Context information, outperforming the state-of-the art-results for personality recognition in two different scenarios. Lastly, we present CNN class activation maps for each personality trait, shedding light on behavioral patterns linked with personality attributes.

View on arXiv
Comments on this paper