ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.08109
49
12

Obfuscation via Information Density Estimation

17 October 2019
Hsiang Hsu
S. Asoodeh
Flavio du Pin Calmon
ArXiv (abs)PDFHTML
Abstract

Identifying features that leak information about sensitive attributes is a key challenge in the design of information obfuscation mechanisms. In this paper, we propose a framework to identify information-leaking features via information density estimation. Here, features whose information densities exceed a pre-defined threshold are deemed information-leaking features. Once these features are identified, we sequentially pass them through a targeted obfuscation mechanism with a provable leakage guarantee in terms of Eγ\mathsf{E}_\gammaEγ​-divergence. The core of this mechanism relies on a data-driven estimate of the trimmed information density for which we propose a novel estimator, named the trimmed information density estimator (TIDE). We then use TIDE to implement our mechanism on three real-world datasets. Our approach can be used as a data-driven pipeline for designing obfuscation mechanisms targeting specific features.

View on arXiv
Comments on this paper